Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kona ; 37: 224-232, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32153313

RESUMO

Gold nanoparticles (AuNPs) exhibit unique size-dependent physiochemical properties that make them attractive for a wide range of applications. However, the large-scale availability of precision AuNPs has been minimal. Not only must the required nanoparticles be of precise size and morphology, but they must also be of exceedingly narrow size distribution to yield accurate and reliable performance. The present study aims to synthesize precision AuNPs and to assess the advantages and limitations of the Turkevich method-one of the common chemical synthesis technique. Colloidal AuNPs from 15 nm to 50 nm in diameter were synthesized using the Turkevich method. The effect of the molar ratio of the reagent mixture (trisodium citrate to gold chloride), the scaled-up batch size, the initial gold chloride concentration, and the reaction temperature was studied. The morphology, optical property, surface chemistry, and chemical composition of AuNPs were thoroughly characterized. It was determined that the as-synthesized AuNPs between 15 nm and 30 nm exhibit well-defined size and shape, and narrow size distribution (PDI < 0.20). However, the AuNPs became more polydispersed and less spherical in shape as the particle size increased.

2.
Platelets ; 31(3): 373-382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31311384

RESUMO

Platelets are central to thrombosis. However, it is unknown whether platelets slip at vascular or device surfaces. The presence of platelet slip at a surface would interrupt physical contact between the platelet and that surface, and therefore diminish adhesion and thrombosis. Unfortunately, no existing technology can directly measure platelet slip in a biological environment. The objective of this study was to explore whether microspheres-modeling platelets-slip at different vascular and device surfaces in an acrylic scaled-up model coronary artery. The microspheres (3.12 µm diameter) were suspended in a transparent glycerol/water experimental fluid, which flowed continuously at Reynolds numbers typical of coronary flow (200-400) through the model artery. We placed a series of axisymmetric acrylic stenoses (cross-sectional area reduction [CSAr], 20-90%) into the model artery, both without and with a central cylinder present (modeling a percutaneous interventional guide wire, and with a scaled-up Doppler catheter mounted upstream). We used laser Doppler velocimetry (LDV) to measure microsphere velocities within, proximal and distal to each stenosis, and compared to computer simulations of fluid flow with no-slip. For validation, we replaced the acrylic with paraffin stenoses (more biologically relevant from a surface roughness perspective) and then analyzed the signal recorded by the scaled-up Doppler catheter. Using the LDV, we identified progressive microsphere slip proportional to CSAr inside entrances for stenoses ≥60% and ≥40% without and with cylinder present, respectively. Additionally, microsphere slip occurred universally along the cylinder surface. Computer simulations indicated increased fluid shear rates (velocity gradients) at these particular locations, and logistic regression analysis comparing microsphere slip with fluid shear rate resulted in a c-index of 0.989 at a cut-point fluid shear rate of (10.61 [cm-1]×mean velocity [cm×sec-1]). Moreover, the presence of the cylinder caused disordering of microsphere shear rates distal to higher grade stenoses, indicating a disturbance in their flow. Finally, despite lower precision, the signal recorded by the scaled-up Doppler catheter nonetheless indicated slip at the entry into and at most locations distal to the 90% stenosis. Our validated model establishes proof of concept for platelet slip, and platelet slip explains several important basic and clinical observations. If technological advances allow confirmation in a true biologic environment, then our results will likely influence the development of shear-dependent antiplatelet drugs. Also, adding shear rate information, our results provide a direct experimental fluid dynamic foundation for antiplatelet-focused antithrombotic therapy during coronary interventions directed towards higher grade atherosclerotic stenoses.


Assuntos
Plaquetas/metabolismo , Constrição Patológica/metabolismo , Trombose/etiologia , Trombose/metabolismo , Velocidade do Fluxo Sanguíneo , Plaquetas/imunologia , Constrição Patológica/diagnóstico , Humanos , Microscopia , Modelos Biológicos , Trombose/patologia , Ultrassonografia Doppler
3.
Saudi Pharm J ; 27(2): 171-175, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30766426

RESUMO

Gold nanoparticles are one of the most extensively investigated metallic nanoparticles for several applications. It is less toxic than other metallic nanolattices. The exceptional electrical and thermal conductivity of gold make it possible to be administered as non-invasive radiofrequency irradiation therapy that produces sufficient heat to kill tumor cells. Nanoparticles are generally administered intravenously instead of orally due to negligible oral absorption and cellular uptake. This study evaluated the oral bioavailability of gold nanoparticles coated with chitosan (C-AuNPs), a natural mucoadhesive polymer. We employed traditional method of evaluating bioavailability that involve estimation of maximum concentrations and area under the curve of 3 nm chitosan coated gold nanoparticles (C-AuNPs) in the rat plasma following intravenous and oral administrations (0.8 mg and 8 mg/kg body weight respectively). The oral bioavailability of C-AuNPs was found to be 2.46% (approximately 25 folds higher than polyethylene glycol (PEG) coated gold nanoparticles, reported earlier). These findings suggest that chitosan coating could be better than PEG coating for the enhancement of oral bioavailability of nanoparticles.

4.
Anal Bioanal Chem ; 410(24): 6141-6154, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29744562

RESUMO

Due to the unique physicochemical properties exhibited by materials with nanoscale dimensions, there is currently a continuous increase in the number of engineered nanomaterials (ENMs) used in consumer goods. However, several reports associate ENM exposure to negative health outcomes such as cardiovascular diseases. Therefore, understanding the pathological consequences of ENM exposure represents an important challenge, requiring model systems that can provide mechanistic insights across different levels of ENM-based toxicity. To achieve this, we developed a mussel-inspired 3D microphysiological system (MPS) to measure cardiac contractility in the presence of ENMs. While multiple cardiac MPS have been reported as alternatives to in vivo testing, most systems only partially recapitulate the native extracellular matrix (ECM) structure. Here, we show how adhesive and aligned polydopamine (PDA)/polycaprolactone (PCL) nanofiber can be used to emulate the 3D native ECM environment of the myocardium. Such nanofiber scaffolds can support the formation of anisotropic and contractile muscular tissues. By integrating these fibers in a cardiac MPS, we assessed the effects of TiO2 and Ag nanoparticles on the contractile function of cardiac tissues. We found that these ENMs decrease the contractile function of cardiac tissues through structural damage to tissue architecture. Furthermore, the MPS with embedded sensors herein presents a way to non-invasively monitor the effects of ENM on cardiac tissue contractility at different time points. These results demonstrate the utility of our MPS as an analytical platform for understanding the functional impacts of ENMs while providing a biomimetic microenvironment to in vitro cardiac tissue samples. Graphical Abstract Heart-on-a-chip integrated with mussel-inspired fiber scaffolds for a high-throughput toxicological assessment of engineered nanomaterials.


Assuntos
Bivalves , Coração/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Nanofibras/toxicidade , Nanoestruturas/toxicidade , Alicerces Teciduais , Adesivos , Animais , Células Cultivadas , Técnicas In Vitro , Indóis/química , Microscopia Eletrônica de Varredura , Miócitos Cardíacos/citologia , Poliésteres/química , Polímeros/química , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Drug Deliv ; 24(1): 591-598, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28222611

RESUMO

Metallic nanoparticles can be produced in a variety of shapes, sizes, and surface chemistries, making them promising potential tools for drug delivery. Most studies to date have evaluated uptake of metallic nanoparticles from the GI tract with methods that are at best semi-quantitative. This study used the classical method of comparing blood concentration area under the curve (AUC) following intravenous and oral doses to determine the oral bioavailability of 1, 2 and 5 kDa PEG-coated 5 nm gold nanoparticles (AuNPs). Male rats were given a single intravenous dose (0.8 mg/kg) or oral (gavage) dose (8 mg/kg) of a PEG-coated AuNP, and the concentration of gold was measured in blood over time and in tissues (liver, spleen and kidney) at sacrifice. Blood concentrations following oral administration were inversely related to PEG size, and the AUC in blood was significantly greater for the 1 kDa PEG-coated AuNPs than particles coated with 2 or 5 kDa PEG. However, bioavailabilities of all of the particles were very low (< 0.1%). Concentrations in liver, spleen and kidney were similar after the intravenous doses, but kidney showed the highest concentrations after an oral dose. In addition to providing information on the bioavailability of AuNPs coated with PEG in the 1-5 kDa range, this study demonstrates the utility of applying the blood AUC approach to assess the quantitative oral bioavailability of metallic nanoparticles.


Assuntos
Ouro/química , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Excipientes/química , Ouro/administração & dosagem , Ouro/farmacocinética , Masculino , Tamanho da Partícula , Ratos , Ratos Wistar , Distribuição Tecidual
6.
Part Fibre Toxicol ; 12: 9, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25884802

RESUMO

BACKGROUND: Particle size is thought to be a critical factor affecting the bioavailability of nanoparticles following oral exposure. Nearly all studies of nanoparticle bioavailability focus on characterization of the primary particle size of the material as supplied or as dosed, and not on agglomeration behavior within the gastrointestinal tract, which is presumably most relevant for absorption. METHODS: In the study reported here, snapshots of agglomeration behavior of gold nanospheres were evaluated in vivo throughout the gastrointestinal tract using transmission electron microscopy. Agglomeration state within the gastrointestinal tract was then used to help explain differences in gastrointestinal particle absorption, as indicated by tissue levels of gold detected using inductively coupled plasma mass spectrometry. Mice were dosed (10 mg/kg) with either 23 nm PEG-coated or uncoated gold nanospheres. RESULTS: Transmission electron microscopy demonstrates that PEG-coated gold nanoparticles can be observed as primary, un-agglomerated particles throughout the gastrointestinal tract and feces of dosed animals. In contrast, uncoated gold nanoparticles were observed to form agglomerates of several hundred nanometers in all tissues and feces. Inductively coupled plasma mass spectrometry shows significantly higher levels of gold in tissues from animals dosed with PEG-coated versus uncoated 23 nm gold nanoparticles. Retention of particles after a single oral gavage was also very high, with all tissues of animals dosed with PEG-coated particles having detectable levels of gold at 30 days following exposure. CONCLUSIONS: Qualitative observation of these particles in vivo shows that dispersed PEG-coated particles are able to reach the absorptive tissues of the intestine while agglomerated uncoated particles are sequestered in the lumen of these tissues. However, the large differences observed for in vivo agglomeration behavior were not reflected in oral absorption, as indicated by gold tissue levels. Additional factors, such as surface chemistry, may have played a more important role than in vivo particle size and should be investigated further.


Assuntos
Trato Gastrointestinal/metabolismo , Ouro/farmacocinética , Nanoconchas/química , Absorção pela Mucosa Oral/efeitos dos fármacos , Polietilenoglicóis/farmacocinética , Adesividade , Administração Oral , Animais , Disponibilidade Biológica , Suco Gástrico/química , Ouro/administração & dosagem , Ouro/química , Masculino , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão , Modelos Teóricos , Nanoconchas/administração & dosagem , Especificidade de Órgãos , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Espectrofotometria Atômica , Fatores de Tempo , Distribuição Tecidual
7.
Nanotoxicology ; 9(1): 116-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24620736

RESUMO

Nanomaterials are known to cause interference with several standard toxicological assays. As part of an in vivo study of PEG-coated gold nanorods in mice, nanorods were added to reference serum, and results for standard clinical chemistry parameters were compared with serum analyzed without nanorods. PEG-coated gold nanorods produced several concentration-dependent interferences. Comparisons were then made with PEG-coated gold and silica nanospheres. Interferences were observed for both materials that differed from gold nanorods. Removal of the particles from serum by centrifugation prior to analysis resolved most, but not all of the interferences. Additional clinical chemistry analyzers were used to further investigate trends in assay interference. We conclude that PEG-coated gold and silica nanoparticles can interfere with standard clinical chemistry tests in ways that vary depending upon material, shape, and specific assay methodology employed. Assay interferences by nanomaterials cannot always be predicted, underscoring the need to verify that nanomaterials under study do not interfere with methods used to evaluate potential biological effects.


Assuntos
Testes de Química Clínica/normas , Ouro/química , Nanosferas/química , Nanotubos/química , Dióxido de Silício/química , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Tamanho da Partícula , Espectrometria de Fluorescência
8.
EuroIntervention ; 9(3): 389-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23872653

RESUMO

AIMS: We sought to describe the response of the polymer surface of drug-eluting stents (DES) to delivery balloon expansion, including quantitation of any resulting detached microparticles. METHODS AND RESULTS: We expanded the US Food and Drug Administration (FDA)-approved first- and second-generation DES in a vacuum filtration system and used optical and scanning electron microscopy to image the polymer surface, filters and delivery balloons. DES were expanded under a range of conditions, from in vitro conditions used for FDA regulatory submissions to human in vivo conditions. Dispersive Raman spectroscopy was used for definitive identification of microparticles. All polymer surfaces were topographically disturbed over an average of 4.6%-100% of the surface area imaged. Disturbances ranged from deformation (including peeling) to complete delamination. The dimensions of detached microparticles were 2-350 µm. The extent and nature of surface disturbances and microparticles were primarily a function of polymer composition (p<0.001 for 8/10 disturbance types/locations) and were independent of expansion condition (p=0.100 to 0.989 for 9/10 disturbance types/locations). CONCLUSIONS: Balloon expansion of first- and second-generation DES disturbs the polymer surface and can cause detachment of microparticles; each is functionally related to the specific polymer but not to expansion condition. Disturbance "roughness" and detached microparticles may contribute to DES limitations.


Assuntos
Angioplastia Coronária com Balão/instrumentação , Stents Farmacológicos , Metais , Polímeros/química , Stents , Angioplastia Coronária com Balão/efeitos adversos , Cateteres Cardíacos , Teste de Materiais , Microscopia Eletrônica de Varredura , Imagem Óptica , Tamanho da Partícula , Pressão , Desenho de Prótese , Falha de Prótese , Análise Espectral Raman , Propriedades de Superfície
9.
Methods Mol Biol ; 926: 13-32, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22975954

RESUMO

The scientific community, regulatory agencies, environmentalists, and most industry representatives all agree that more effort is required to ensure the responsible and safe development of new nanotechnologies. Characterizing nanomaterials is a key aspect in this effort. There is no universally agreed upon minimum set of characteristics although certain common properties are included in most recommendations. Therefore, characterization becomes more like a puzzle put together with various measurements rather than a single straightforward analytical measurement. In this chapter, we emphasize and illustrate the important elements of nanoparticle characterization with a systematic approach to physicochemical characterization. We start with an overview describing the properties that are most significant to toxicological testing along with suggested methods for characterizing an as-received nanomaterial and then specifically address the measurement of size, surface properties, and imaging.


Assuntos
Nanoestruturas/toxicidade , Nanotecnologia/métodos , Animais , Imageamento Tridimensional , Microscopia , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície/efeitos dos fármacos
11.
Environ Toxicol ; 26(5): 541-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21910207

RESUMO

In freshwater fish, aluminum is a well-recognized gill toxicant, although responses are influenced by pH. Aluminum nanomaterials are being used in diverse applications that are likely to lead to environmental release and exposure. However, it is unclear if the effects of nanoparticulate aluminum are similar to those of other forms of aluminum or require special consideration. To examine the acute toxicological effects of exposure to aluminum nanoparticle (Al-NP)s, adult female zebrafish were exposed to either Al-NPs or aluminum chloride for up to 48 hours in moderately hard fresh water. Al-NPs introduced into test water rapidly aggregated and up to 80% sedimented from the water column during exposures. No mortality was caused by concentrations of Al-NP up to 12.5 mg/L. After exposure, tissue concentrations of aluminum, effects on gill morphology, Na+, K+ -ATPase (NKA) activity, and global gene expression patterns were examined. Exposure to both aluminum chloride and nanoparticulate aluminum resulted in a concentration dependent decrease in sodium potassium ATPase activity, although Al-NP exposure did not alter gill morphology as measured by filament widths. Decreased ATPase activity coincided with decreases in filamental NKA staining and mucous cell counts. Analysis of gill transcriptional responses demonstrated that exposure to 5 mg/L Al-NP only resulted in significant changes in expression of two genes, whereas aluminum chloride exposure significantly affected the expression of 105 genes. Taken together, these results indicate that nanoparticulate aluminum has little acute toxicity for zebrafish in moderately hard freshwater.


Assuntos
Alumínio/toxicidade , Brânquias/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Cloreto de Alumínio , Compostos de Alumínio/toxicidade , Animais , Cloretos/toxicidade , Feminino , Água Doce/química , Expressão Gênica/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho da Partícula , ATPase Trocadora de Sódio-Potássio/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...